SAR Image Segmentation using Vector Quantization Technique on Entropy Images

نویسندگان

  • H. B. Kekre
  • Saylee M. Gharge
  • Tanuja K. Sarode
چکیده

The development and application of various remote sensing platforms result in the production of huge amounts of satellite image data. Therefore, there is an increasing need for effective querying and browsing in these image databases. In order to take advantage and make good use of satellite images data, we must be able to extract meaningful information from the imagery. Hence we proposed a new algorithm for SAR image segmentation. In this paper we propose segmentation using vector quantization technique on entropy image. Initially, we obtain entropy image and in second step we use Kekre’s Fast Codebook Generation (KFCG) algorithm for segmentation of the entropy image. Thereafter, a codebook of size 128 was generated for the Entropy image. These code vectors were further clustered in 8 clusters using same KFCG algorithm and converted into 8 images. These 8 images were displayed as a result. This approach does not lead to over segmentation or under segmentation. We compared these results with well known Gray Level Co-occurrence Matrix. The proposed algorithm gives better segmentation with less complexity Keywords-component; SAR image; image Segmentation; Probability; Entropy; Vector Quantization; Codevector;.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

Detection and Demarcation of Tumor using Vector Quantization in MRI images

Segmenting a MRI images into homogeneous texture regions representing disparate tissue types is often a useful preprocessing step in the computer-assisted detection of breast cancer. That is why we proposed new algorithm to detect cancer in mammogram breast cancer images. In this paper we proposed segmentation using vector quantization technique. Here we used Linde Buzo-Gray algorithm (LBG) for...

متن کامل

Synthetic Aperture Radar (SAR) image segmentation by fuzzy c- means clustering technique with thresholding for iceberg images

Fuzzy c-means (FCM) clustering algorithm is widely used for image segmentation. The purpose of clustering is to identify natural groupings of data from a large data set, which results in concise representation of system’s behavior. It can be used to detect icebergs regardless of ambient conditions like rain, darkness and fog. As a result SAR images can be used for iceberg surveillance. In this ...

متن کامل

Color Image Segmentation Using Kekre-s Algorithm for Vector Quantization

In this paper we propose segmentation approach based on Vector Quantization technique. Here we have used Kekre’s fast codebook generation algorithm for segmenting low-altitude aerial image. This is used as a preprocessing step to form segmented homogeneous regions. Further to merge adjacent regions color similarity and volume difference criteria is used. Experiments performed with real aerial i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1004.1789  شماره 

صفحات  -

تاریخ انتشار 2010